内容简介
本书以聚类分析为基本工具,围绕入侵检测这一目标展开讨论。包括:入侵检测的柑关概念和研究现状;聚类分析的基础知识;针对入侵检测问题中数据具有大规模和混合属性的特点,重点研究数据之间的差异性度量方法,高效自适应聚类算法;在介绍现有经典的异常挖掘算法的基础上,提出异常因子的度量方法,进而研究静态异常挖掘算法;改进最近邻分类方法,在静态异常检测的基础上,研究一类动态数据的异常检测,将入侵检测问题视为动态数据的异常检测问题;总结并对后续研究丁作进行展望。
本书通过实例说明原理,对从事数据挖掘、入侵检测的科技人员具有重要的参考价值。还可作为计算机、信息技术等专业的研究生学习、研究的参考资料。