内容简介
本书是一部反映非线性偏微分方程研究前沿成果的专著,系统地阐述了近20年形成的一种求解非线性偏微分方程的全新理论——分层理论。介绍了这种理论将方程的求解问题转化为有关的拓扑学问题的具体方法和步骤,给出了适定问题的计算程序;讨论了流体力学中几类重要的非线性偏微分方程,包括一般流体的Landau-Lifchitz方程,无粘、不可压流体的Euler方程以及混合流体完备方程等的Cauchy问题以及混合问题的适定性,给出了所论方程适定问题的解析解计算公式;讨论了不稳定方程,特别是N-S方程及其各种“变形”方程的C(k≥2)的不稳定性,并就若干特殊情形给出了方程的准确解。书末附录简要介绍了拓扑学中的一些基本概念及其有关结论。
本书既可作为高等院校数学、力学专业的研究生教学用书,也可作为这两个专业领域的教学、科研人员的参考用书。