内容简介
本书系统地阐述了约束力学系统的变分原理、运动方程、相关专门问题的理论与应用、积分方法、对称性与守恒量等内容,具有很高的学术价值,为方便国际学术交流,译成英文出版。全书共分为六个部分:
第一部分:约束力学系统的基本概念。本部分包含6章,介绍分析力学的主要基本概念;第二部分:约束力学系统的变分原理。本部分有5章,阐述微分变分原理、积分变分原理以及Pfaff-Birkhoff原理;第三部分:约束力学系统的运动微分方程。本部分共11章,系统介绍完整系统、非完整系统的各类运动方程;第四部分:约束力学系统的专门问题。本部分有8章,讨论运动稳定性和微扰理论、刚体定点转动、相对运动动力学、可控力学系统动力学、打击运动动力学、变质量系统动力学、机电系统动力学、事件空间动力学等内容;第五部分:约束力学系统的积分方法。本部分有6章,介绍降阶方法、动力学代数与Poisson方法、正则变换、Hamilton-Jacobi方法、场方法、积分不变量;第六部分:约束力学系统的对称性与守恒量。本部分共10章,讨论Noether对称性、Lie对称性、形式不变性,以及由它们导致的各种守恒量。
本书的出版必将引起国内外同行的关注,对该领域的发展将起到重要的推动作用。