内容简介
本书除了第1章绪论外,包括三大部分。第一部分为基础理论,介绍了全书所关注的理论基础,由第2~4章组成,分别为:统计推断与贝叶斯预测、优化理论与搜索计算以及参数估计与信号检测。这部分主要讨论在贝叶斯统计框架下,搜索与观测数据最佳匹配的模型,并利用各种评价规则来估计模型的参数。第二部分为主题应用,包括第5~8章,包含了四个方面应用:数据建模与系统辨识、自适应信号处理、模式识别的统计方法和基于统计的数据挖掘技术。这部分是全书的应用部分,学生可以根据自己专业的特点有选择地学习。第三部分是本书的提高部分,包括第9章和第10章,分别讨论了人工神经网络和机器学习。
第2~4章是学习本书其余各章节所必不可少的基础,必须仔细体会和琢磨。而有关应用的章节(第5~8章),读者可以按照自己的兴趣或选择阅读或暂时跳过,不必考虑章节次序。最后两章是为学有余力或希望提高自己能力的同学准备的,其他同学目前不研究也没有影响。每章末尾的习题有两个作用:一是加深理解正文的内容;二是介绍一些正文中未能包括的新成果和新应用。每章都介绍一些参考文献。
本书的对象是通信工程、电子信息工程和机电工程专业的高年级本科生和低年级研究生,参考学时32~48。作者希望学习本课程的学生已经学过系统理论课程和概率论与随机过程课程。系统理论课程的内容应包括连续时间系统和离散时间系统的状态变量法和各种变换技术等。