内容简介
本书比较全面系统地介绍了机器学习的方法和技术,不仅详细阐述了许多经典的学习方法,还讨论了一些有生命力的新理论、新方法。全书共分为13章,分别介绍了机器学习的基本概念、最近邻规则、贝叶斯学习、决策树、基于事例推理的学习、关联规则学习、神经网络、支持向量机、遗传算法、集成学习、纠错输出编码、聚类分析、强化学习。各章对原理的叙述力求概念清晰、表达准确,突出理论联系实际,富有启发性,易于理解。
本书可作为高等院校计算机、自动化、电子和通信等专业研究生和高年级本科生的教材和参考书。本书内容对从事人工智能、机器学习、数据挖掘、模式识别等相关领域研究的科技人员具有较好的参考价值。