内容简介
全书共二十章,前六章是属于基础知识,内容包括:整数分解、同余式、二次剩余、多项式之性质、素数分布概况、数论函数等;后十四章是就解析数论、代数数论、超越数论、数的几何这几个数论主要分支的基础部分加以介绍,内容包括:三角和、数的分拆、素数定理、连分数、不定方程、二元二次型、模变换、整数矩阵、p-adic数、代数数沦导引、超越数、Waring问题与Prouhet-Tarry问题、数的几何等,书里引述厂许多我国古代数学家在数论上的成就,也包含了许多近代数论中的重要成果,例如著者关于完整三角和及最小原根的结果、关于Prouhet-Tarry问题的结果、Basorpaaos关于最小二次非剩余的结果、Selberg关于素数定理的初等证明,RothSiegel定理、A.O.关于Hilbert第七问题的证明、Siegel关于二元二次型类数的定理 关于Waring问题的证明关于问题的结果、Selberg的筛法等等;书中也包括了著者许多未经发表的结果。
本书是以深入浅出、循序渐进的笔法写成的,读者可以通过它看出如何从一个简单的概念逐步走向深刻的研究,看出具体与抽象之间的联系。